
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Micellar shape dependence of cholesteric pitch in lyotropic liquid crystals
L. Longaabc; M. Bachtelera; A. M. Figueiredo Netoa; G. Cholewiaka; F. A. Oliveirac

a Uniwersytet Jagielloński, Instytut Fizyki, Reymonta 4, Krakoacute;w, b Universidade de São Paulo,
Instituto de Fisica, Caixa Postal 66318, c International Centre of Condensed Matter Physics,
Universidade de Brasilia, Campus Universitário Darcy Ribeiro-CP 04513-CEP 70919-970, Brasilia-DF,
Poland 05315-970-São Paulo, SP, Brazil,

Online publication date: 06 August 2010

To cite this Article Longa, L. , Bachteler, M. , Neto, A. M. Figueiredo , Cholewiak, G. and Oliveira, F. A.(2000) 'Micellar
shape dependence of cholesteric pitch in lyotropic liquid crystals', Liquid Crystals, 27: 12, 1669 — 1673
To link to this Article: DOI: 10.1080/026782900750037248
URL: http://dx.doi.org/10.1080/026782900750037248

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/026782900750037248
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Liquid Crystals, 2000, Vol. 27, No. 12, 1669± 1673

Micellar shape dependence of cholesteric pitch in lyotropic
liquid crystals

L. LONGA†‡§*, M. BACHTELER†, A. M. FIGUEIREDO NETO‡,
G. CHOLEWIAK† and F. A. OLIVEIRA§
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A generalized Landau–Ginzburg–de Gennes theory of cholesteric pitch in lyotropic chiral
liquid crystals is presented. Using the non-critical order parameter, introduced by Toledano
and Figueiredo Neto, the question of pitch dependence on micellar shape is addressed. This
extra order parameter accounts for the shape change of the micelles. The predictions agree
qualitatively with the unique experimental observations of Lopes and Figueiredo Neto.

The cholesteric phase appears in materials composed an increase in the microscopic shape anisotropy of the
of chiral molecules or in mixtures of the latter with micelles lowers the cholesteric pitch. The system studied
ordinary nematogenic compounds, and is known for was a mixture of potassium laurate, decanol, water, and
both thermotropic and lyotropic liquid crystals [1–5]. brucine sulphate. For a � xed molar concentration of
It is locally very similar to the nematic phase where the chiral material, the shape anisotropy of the micelles
the centres of mass of the molecules or micelles are dis- was controlled by the balance between the molar concen-
ordered, while their orientations are, on average, parallel trations of the alcohol and the soap. Identi� cation of
to the director, n̂. The director, however, is not constant the pitch and of the micellar shape anisotropy followed
in space, but rotates uniformly about a helical axis, from optical and X-ray diŒraction techniques, respectively.
perpendicular to n̂. The periodicity of the structure often A purpose of this paper is to look at the shape
lies in the optical region, which results in the Bragg anisotropy dependence of the pitch from a theoretical
scattering of visible light. As in nematics, the states n̂ point of view. We shall generalize the order parameter
and Õ n̂ of the director are equivalent, implying that the description of cholesterics by incorporating the non-
spatial periodicity (wavelength) of the cholesterics is one critical order parameter of Toledano and Figueiredo
half of the magnitude of the pitch [1–3]. Neto [9, 10], which measures the shape anisotropy of

The cholesteric phase of lyotropic cholesteric liquid the micelles.
crystals (i.e. mixtures of amphiphilic compounds, water, To start with, let us recall that the leading order
and chiral molecules) [4, 5], has been studied intensively parameter describing orientational properties of meso-
over the last decade [4–7]. In particular, it was shown, phases is an alignment tensor Q(r). The tensor is sym-
that for small concentration Ma of optically active metric and traceless, and of second rank. Therefore it has
material dissolved in a nematic matrix, the wavelength � ve independent components. The spatial dependence
of the helical distortion is inversely proportional to Ma . of Q takes into account the possibility of non-uniform
While this observation is analogous to what we know con� gurations of the orientational degrees of freedom, like
for thermotropic cholesterics [1], an experiment that those observed for cholesterics. In general, it describes
showed the in� uence of the shape anisotropy of the locally three structures : (a) the isotropic reference structure,
micelles on the pitch [8] seems to be unique to lyo- where Q (r) 5 0; (b) the uniaxial structure in which case
tropic systems. More speci� cally, it was observed that Q (r) has two equal eigenvalues; and (c) the biaxial

structure, where all three eigenvalues of Q(r) are diŒerent.
In the case of the cholesteric phase Q (r) takes the general*Author for correspondence; e-mail: lechifuj@if.uj.edu.pl
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1670 L. Longa et al.

form of a biaxial helix [11] phase boundary serving as a unit of length. The
remaining two parameters b and c are redundant. Due
to the choice of units and due to the prolate–oblate
symmetry of FdeGL one may take b 5 c 5 1 [11, 12].QCh (r) 5

Õ Q0
Ó 6 AÕ 1 0 0

0 Õ 1 0

0 0 2B The free energy (2), when supplemented with � fth and
sixth order terms in Q, describes qualitatively the main
features of phase diagrams of nematic and cholesteric
liquid crystals, i.e. all observed nematic phases are
classi� ed properly and the topologies of phase diagrams1

Ó 2Q
2

2 Acos (u) Õ sin (u) 0

Õ sin (u) Õ cos (u) 0

0 0 0B (1 )
are reproduced correctly for thermotropic liquid crystals
and partly for lyotropic systems. However, there are
generic observations that cannot be accounted for bywhere u stands for qz 1 y2 , q for wave vector, y2 for
the free energy functional FdeGL . One of them is temper-an arbitrary phase re� ecting a freedom of choosing
ature behaviour of the cholesteric pitch. The Landau–the coordinate orgin and Q0 , Q2 for magnitudes of the
Ginzburg–de Gennes model predicts that the cholestericuniaxial and biaxial parts of Q

Ch
, respectively.

pitch does not depend on temperature. To see this, letIt was de Gennes who � rst proposed the Landau–
us note that the explicit q-dependence appears onlyGinzburg type of expansion in terms of the alignment
in the elastic part of FdeGL . The direct substitution oftensor Q (r) [1]. He aimed to describe � uctuations
QCh , equation (1), into FdeGL and simple minimizationof the order parameter in the isotropic phase, close to
over q yields q

min 5 k, which is in clear contradictionthe nematic (cholesteric) phase transition. Therefore, the
with experiments on cholesterics, where the wave vectorfree energy, F

deGL
, that he proposed, contains O (3)

depends strongly on temperature [14].(or S O (3) for the cholesteric case) symmetric invariants,
The experimentally observed temperature dependencewhich can be constructed from the order parameter Q(r)

of the pitch clearly suggests that the higher order elasticand its derivatives. FdeGL consists of two parts: the
terms, which are usually disregarded in the standardgradient free energy, which includes terms in derivatives
theory (2), must be relevant. In a series of publicationsof the order parameter, and the bulk part, containing
[15–17] a systematic way of studying the general pro-powers of the order parameter itself. Stability of the
perties of the higher order elastic free energy expansionexpansion demands keeping at least the terms up to
was proposed. This generalized theory, as we willsecond order in the gradient and up to fourth order in
show below, allows for a qualitative description of thethe bulk free energy. In the absence of external � elds
temperature dependence of the pitch and it will be aand in the reduced units of Grebel et al. [11, 12] the
starting point of our discussion of the shape anisotropyoriginal expression of de Gennes reads [13]:
dependence of the pitch.

Owing to the � rst order nature of the isotropic–FdeGL 5 v Õ 1 P
v

d3xG1
4

[t Tr(Q2)
cholesteric phase transition and the weakness of the
spatial modulation of Q, it seems justi� ed to consider

Õ 2ke
ijk

QinQ
jn,k

1 (Q
ij,l

)2 1 rQ2
ij,j

]
only elastic terms that are linear and quadratic in the
derivatives of Q. Therefore we shall restrict ourselves to

Õ Ó 6b Tr(Q3) 1 c[Tr (Q2)]2H (2 ) the elastic invariants built up from the tensors Q
ij

Q
lk

¼
Q

st
(Q

mn,o
) and Q

ij
Q

lk
¼ Q

st
(Q

mn,o
)(Q

rw,p
) by means of con-

tractions with the Kronnecker deltas and the Levi–Civitawhere the symbol e
ijk

denotes the totally antisymmetric
Levi–Civita tensor and the summation over repeated tensors.

A major di� culty in the analysis of higher order elasticindices is to be understood. The mixed term containing
the Levi–Civita tensor is diŒerent from zero only in the terms is their huge number. Also, not all of them are

independent as the constraints: Q
ii

5 0 and Q
ii,j

5 0 mustcholesteric phase, which has no mirror symmetry. The
stability of the expansion (2) requires that r > Õ 3/2 be taken into account. Using the method of integrity

basis, it was shown that the general elastic free energyand c > 0.
The meaning of all the parameters in the expansion up to quadratic order in qQ is composed of 39 invariants

[15], which are multiplied by arbitrary polynomials in(2) has been explained by Grebel et al. [11, 12]. For
example, k is the dimensionless chirality parameter, t is Tr Q2 and Tr Q3. The leading higher order invariants

are cubic terms of the form Q
ij

Q
lm,n

Q
st,o

. For the stabilitythe dimensionless reduced temperature and r is the
relative elastic constant. Distance and pitch, when of the free energy expansion we must additionally retain

some Q
gk

Q
ij

Q
lm,n

Q
st,o

terms. The Cartesian form of theseexpressed in reduced units, are dimensionless with the
bare correlation length at the istropic–nematic (racemic) invariants has been given by Longa et al. [17]. There

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1671Pitch dependence on micellar shape

are six cubic invariants, 13 quartic invariants and Minimization of equation (5) with respect to q yields
the equilibrium value of the wave vectorone chiral invariant of third order, which introduce,

besides the terms already present in equation (2), 20
more elastic terms. Although three surface relaxations
eliminate three invariants, a study of the free energy q

k
5

Ab
kBQ

0 1 1

gQ0 1 aQ20 1 hQ22 1 1
. (6)

expansion with an extra 17 adjustable parameters is
hardly worthwhile. It is thus important to identify the

It depends on the amplitudes Q0 and Q2 , which are also
relevant terms. Interestingly, due to the properties of the

found from the minimization of the free energy (5). Note
cholesteric tensor � eld Q

Ch
(r), equation (1), the majority

that cholesteric wave vector q depends on temperature
of these new elastic terms just disappear leaving only

in an indirect way, i.e. through equilibrium values of Q0one reduced elastic constant of third order, two elastic
and Q2 . For a weak higher order chiral term (small b)

constants of fourth order and one third order chiral
the increase of the order parameters Q0 and Q2 (decrease of

coupling constant. Gathering all non-vanishing terms of
temperature) causes a decrease of the wave vector. This

cubic and quartic order and adding the next-to-leading ,
general behaviour predicted by the model is illustrated

chiral cubic invariant we get the following additional
in � gure 1 (dashed lines). Some other possibilities, e.g.

contribution Fel to FdeGL
[17]

with a maximum at intermediate temperatures, also
exist [18].Fel 5 L (3)4 QabQam,n

Qbm,n
1 L (4)7 QarQbrQam,n

Qbm,n The theoretical results are in line with experimental
1 L (4)1 Tr(Q2 )Qam,n

Qam,n data for thermotropic cholesterics [14], although very
strong temperature variation of the pitch for some1 2L (3)7 eabc QamQbnQmc,n

, (3 )
temperatures, e.g. close to a smectic phase or in the

where the notation follows that of [17]. vicinity of the isotropic–cholesteric phase transition,
We may safely assume that the weight of the higher most probably cannot be understood exclusively in terms

order terms (3) should be smaller than that of the of temperature variation of the order parameters. In these
leading ones present in the expansion (2). Observing regimes short range smectic ordering or � uctuations
symmetry of various terms, this would imply that seem to aŒect the cholesteric helix much more strongly

than the predictions of equation (6).L (4)1 & 1, L (4)7 & 1, L (4)7 & |L (3)4 | & 1 and |L (3)7 | & k.
Now we turn to lyotropic systems. The most import-

(4 ) ant new aspect here is changes in the form of the
micellar aggregates that directly couple to the resulting

Additionally, the stability of the combined expansion orientational order. This means that in any microscopic
FdeGL 1 Fel requires that L (4)1 > 0 and L (4)7 > 0. or phenomenological descriptions of lyotropics it is

Now, substitution of equation (1) into (2) and (3) necessary to take into account the modi� cation of the
yields average micellar shape anisotropy with temperature

F
deGL 1 F

el

5 A Õ 3 Õ
1
2

bq 1
1
4

gq2BQ0Q22 1 A2 1
1
4

aq2BQ20Q22

1 Q30 1 Q40 1 A1 1
1
4

hq2BQ42 1
1
4

tQ20

1 A1
4

q2 Õ
1
2

kq 1
1
4

tBQ22
(5 )

where a 5 2L (4)1 1 (1/3)L (4)7 , h 5 2L (4)1 1 L (4)7 , b 5 (2 Ó 6/3)L (3)7 ,
and where g 5 (2 Ó 6/3)L (3)4 . That is, instead of 17 new
coupling constants, we get for cholesterics only one
reduced elastic constant of third order, denoted g, and

Figure 1. Temperature variation of the wave vector q/k dis-two elastic constants a and h of fourth order, where
regarding (dashed lines) and regarding (solid lines) shapea < h. There is also a third order chiral coupling constant
parameter of the micelles for k 5 1, b 5 Õ 0.5, g 5 Õ 0.5b. In the majority of cases they should obey the relations: a 5 0.3, h 5 0.4 and for (a) x1 5 Õ 0.5; x2 5 2 and (b) x1 5 Õ 1;

a & 7/3, h & 3, |b| & (2 Ó 6/3)k and Ó 6(h Õ a) & |g| & 2 Ó 6/3, x2 5 1. Inset corresponds to k 5 1, b 5 Õ 0.3, g 5 1.6 a 5 2.4
and h 5 3. All quantities are plotted dimensionless.which follow from equation (4).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1672 L. Longa et al.

and relative concentrations in the mixture compounds The minimization of F 5 FdeGL 1 Fel 1 Ft with respect
to q now yields[9, 10]. One possibility is to introduce a non-critical,

scalar order parameter, t, in addition to Q, as proposed
by Toledano and Figueiredo Neto [9, 10]. One could
interpret t as measuring a relative variation in the q

k
5

Ab
kBQ0 1 1

gQ
0 1 aQ20 1 hQ22 1 a

1
t2 1 1

(8)population of diŒerent types of micelle. For instance,
the description of a biaxial nematic phase sandwiched

which is similar to the one given by equation (6 ) exceptbetween two isotropic phases would require t, which
for the extra term proportional to a

1
. In addition to Q

0measures the relative population of predominantly
and Q2 , now also t must be found from the miminizationbiaxial and almost spherical micellar aggregates [9, 10].
of the free energy. The temperature variation of the pitchIn the case of phase transition between isotropic and
in the case when we account for the change in the shapecholesteric discotic phases, t would measure the relative
of the micelles ( |t| < 0.5) and restrict phenomenologicalbalance between predominantly discotic and almost
parameters to those previously discussed, is shown inspherical micelles.
� gure 1 (solid lines). We note that although micellarThe minimal coupling theory describing isotropic,
shape clearly changes the wave vector of cholesterics,uniaxial and biaxial phases observed in lyotropic systems
the curves follow strictly those where the micellar shapewas shown to be a series expansion in terms of the three
was not included. The relative contribution from micellarindependent invariants [9, 10]: t, Tr(Q2) 1 t2 and Tr(Q3)
shape change is of the order of 10% and is strongest ininstead of just Tr(Q2) and Tr(Q3) as in equation (2).
the vicinity of the isotropic–cholesteric phase transition.The modi� ed expansion has the same mathematical
Again this prediction is quite general and practicallystructure as that in Tr(Q2) and Tr(Q3). The expansion
independent of the values of phenomenological para-in t is dropped at the t

2
term. In the case of biaxial

meters. Also note that due to the prolate–oblate sym-micellar systems the expansion runs up to sixth order
metry of the Landau–Ginzburg description [13], thein Q.
results hold both for cholesteric discotic and cholestericInterestingly, the theory so constructed classi� es
calamitic phases. In the � rst case t measures relativeproperly the phase diagrams observed in lyotropic
population of predominantly discotic and almost sphericalnematics. In particular, it accounts for re-entrant behaviour
micelles, while in the second case discotic micelles are[9, 10, 19–21], which for many years was an unsolved
replaced by prolate ones.problem.

Now we turn to the case studied experimentally inNow the question that arises is whether a combination
[8]. As already mentioned, the experiments were carriedof de Gennes theory and higher order elastic terms with
out for the mixture of potassium laurate, decanol,the ideas of the microscopic shape anisotropy of the
water, and brucine sulphate. Temperature and molarmicelles as a function of t can explain qualitatively the
concentration of the chiral component were kept � xedpitch behaviour of cholesteric lyotropic liquid crystals
(or nearly so), while the shape anisotropy of the micelles[8]. Applying the transformation: Tr(Q2 ) � Tr(Q2 ) 1 t2
was controlled by the balance between the molar concen-to FdeGl 1 Fel and adding independently terms in t
trations of the alcohol and the soap. In all cases studied(up to quadratic order) [9, 10] yields the free energy,
the stable phase observed was cholesteric discotic,equation (5), supplemented by extra terms
positioned a few degrees above the isotropic phase or
polyphasic region.

Ft 5 x
1
t 1

1
4

tt2 1 x
2
t2 1 2(Q20 1 Q22

)t2 In our phenomenological description this is equivalent
to minimization of F with respect to q, Q0 and Q2
for given t keeping t, k, and all remaining parameters

1
1

4
a1q2Q22t2 1 t4 (7 )

� xed. Note that x1 and x2 are irrelevant in this case.
The generic prediction of such minimization is shown in

where x1 , x2 and a1 5 1/2(3a Õ h) are additional pheno- � gure 2. Generally, we � nd that increases of micellar
menological parameters. Note that the terms depending shape anisotropy shifts q towards higher values, i.e.
exclusively on t are allowed by symmetry. Their presence lowers the pitch. For moderate values of t ( |t| < 0.5)
is necessary as they take into account the modi� cation and for a chosen set of the parameters, the relative
of the micellar shape anisotropy [9, 10]. The only new increase in q is 10–20%. Within the theory presented,
term appearing in equation (7), as compared with the the micellar shape aŒects the cholesteric wave vector
work by Toledano et al. [9, 10], is that proportional to both directly via coupling with higher order elastic terms
a1 . It accounts for the direct coupling between elastic and indirectly through its in� uence on the equilibrium

value of the order parameters Q
0

and Q
2
.deformations and t.
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1673Pitch dependence on micellar shape

In summary, we have developed a generalized Landau–
Ginzburg–de Gennes theory of cholesteric liquid crystals,
specially applied to lyotropics where the shape aniso-
tropy of the micelles is a function of the temperature
and the relative concentrations of the diŒerent com-
pounds. The theory describes qualitatively the experi-
mental behaviour of the cholesteric pitch as a function
of the temperature and the relative concentrations of
the diŒerent compounds in lyotropic cholesterics. As the
formalism used makes no distinction between prolate
and oblate symmetry, it would also be of interest to
carry out analogous experiments for the cholesteric
calamitic phase.

This work was partially supported by the Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP),
CNPq (Brazil ) and PRONEX (Brazil ).
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